MonolithNet: Training monolithic deep neural networks via a partitioned training strategy
نویسندگان
چکیده
منابع مشابه
Training Deep Neural Networks via Direct Loss Minimization
Supervised training of deep neural nets typically relies on minimizing cross-entropy. However, in many domains, we are interested in performing well on metrics specific to the application. In this paper we propose a direct loss minimization approach to train deep neural networks, which provably minimizes the application-specific loss function. This is often non-trivial, since these functions ar...
متن کاملAccelerating Training of Deep Neural Networks via Sparse Edge Processing
We propose a reconfigurable hardware architecture for deep neural networks (DNNs) capable of online training and inference, which uses algorithmically pre-determined, structured sparsity to significantly lower memory and computational requirements. This novel architecture introduces the notion of edge-processing to provide flexibility and combines junction pipelining and operational paralleliza...
متن کاملTraining Deep Neural Networks via Optimization Over Graphs
In this work, we propose to train a deep neural network by distributed optimization over a graph. Two nonlinear functions are considered: the rectified linear unit (ReLU) and a linear unit with both lower and upper cutoffs (DCutLU). The problem reformulation over a graph is realized by explicitly representing ReLU or DCutLU using a set of slack variables. We then apply the alternating direction...
متن کاملTraining and Analyzing Deep Recurrent Neural Networks
Time series often have a temporal hierarchy, with information that is spread out over multiple time scales. Common recurrent neural networks, however, do not explicitly accommodate such a hierarchy, and most research on them has been focusing on training algorithms rather than on their basic architecture. In this paper we study the effect of a hierarchy of recurrent neural networks on processin...
متن کاملIncremental Training of Deep Convolutional Neural Networks
We propose an incremental training method that partitions the original network into sub-networks, which are then gradually incorporated in the running network during the training process. To allow for a smooth dynamic growth of the network, we introduce a look-ahead initialization that outperforms the random initialization. We demonstrate that our incremental approach reaches the reference netw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Vision and Imaging Systems
سال: 2018
ISSN: 2562-0444
DOI: 10.15353/jcvis.v4i1.340